

Niedersächsisches Ministerium für Wissenschaft und Kultur

International Conference Series on European Hyperloop Technology

Technological Development in Large Scale Research Infrastructures

Dr. Ralf Effenberger, INTIS GmbH, February 23rd 2021

Presentation contents

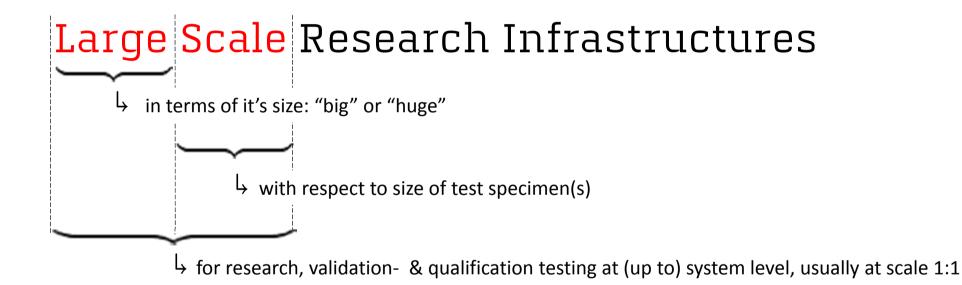
- About INTIS GmbH
- What does "Large Scale" mean?
- Example for Large Scale (testing) infrastructure Space Research
- Example for Large Scale (testing) infrastructure Aerospace Testing
- Example for Large Scale (testing) infrastructure TVE (maglev)
- Why maglev can help to develop Large Scale Research Infrastructures for Hyperloop
 - Technology
 - Operations & Maintenance
- Large Scale Research Infrastructures a must for the validation of Hyperloop technology and operational aspects
- TVE being available for the provision of Large Scale Research Infrastructure services
- Questions?

About INTIS GmbH

- Company founded in December 2011 in Hamburg; spin-off of the "Transrapid-Versuchsanlage Emsland (TVE)" maglev test track
- INTIS is 100% owned by IABG mbH, a company based in Ottobrunn near Munich

Our focus (1): Charging Technology for e-mobility

- turn key wireless power transfer solutions ("inductive charging")
- Combined (WPT & DC-conductive)
- for use in public environment (incl. micromobility), industrial & maritime applications


<u>Our focus (2)</u>: finding way's to re-use the TVE/ testing of future high speed rail guided systems

 (\mathbf{O})

 \mathbf{O}

What does "Large Scale" mean?

 $\bigcirc \bigcirc$

Example for Large Scale (testing) infrastructure – Space Research

ESA/ESTEC: → European Space Research and Technology Centre (Noordwijk, The Nethelands)

Largest Space Test Center in Europe (about 200m x 200m → not very large in size...)

... operating an environmental test centre for spacecraft, with supporting engineering laboratories specialised in systems engineering, components and materials, and working within a network of other facilities and laboratories.

...but testing of different satellite development stages at scale 1:1 possible (sources: ESA)

ATV-StM in "LEAF"

LSS"

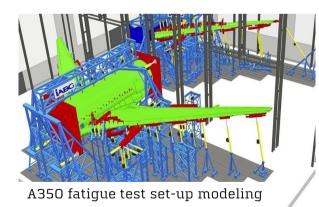
Rosetta-FM with lander Philae in "LSS"

ATV-FM in EMC-chamber

AEOLUS-StM on multi-shaker

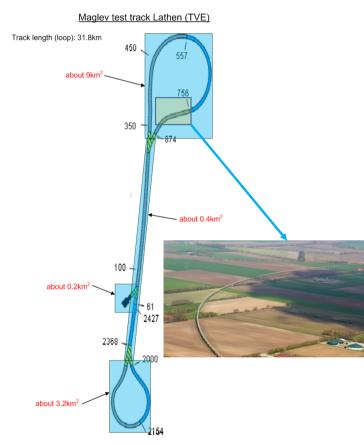
LEAF - <u>Large</u> European Acoustic Facility; LSS - <u>Large</u> Space Simulator; StM - Structural model; FM - Flight model; Rosetta and its lander Philae did have a rendezvous with the comet Tschurjumow-Gerassimenko (2014 ... 2016, 12.11.2014); Aeolus: ESA satellite for earth observation (in service)

Example for Large Scale (testing) infrastructure – Aerospace Testing


IABG's aircraft full-scale testing facility at the airfield near Erdingen

<u>Test Hall Size</u> (about 5000m2 → not very large in size...)

...but full-scale (1 : 1) testing of relevant aircraft structures possible (sources: IABG)


 $\bigcirc \bigcirc$

Example for Large Scale (testing) infrastructure – TVE (maglev)

IABG's high speed rail (maglev) full-scale testing facility (Lathen, Emsland)

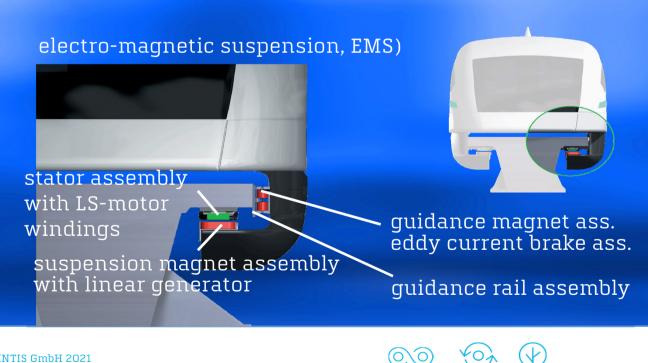
<u>Test site "land occupation"</u> (about 12.8 km2 \rightarrow large size, for full scale testing of all subsystems & at system level)

- erected on private land (rented from several different land owners)
- operated between 1983 and 2011
- not surrounded/ secured by e.g. fences
- \rightarrow <u>operated in public environment</u>
 - operations & maintenance ruled by law: "Gesetz über den Bau und den Betrieb von Versuchsanlagen zur Erprobung
 von Techniken für den spurgeführten Verkehr"
 - approving authorities to be appointed
 - any kind of activities to be validated/ approved by independent expert witness (assessors)
 - operations and maintenance to be done on the basis of approved procedures
- show video <u>"November 2011 TRO9 last ride on TVE"</u>

Example for Large Scale (testing) infrastructure - TVE (maglev)

Transrapid (maglev) Testing Facility Emsland (TVE)

Example for Large Scale (testing) infrastructure - TVE (maglev)


Transrapid (maglev) Testing Facility Emsland (TVE)

Why maglev can help to develop Large Scale Research Infrastructures for Hyperloop \rightarrow Technology

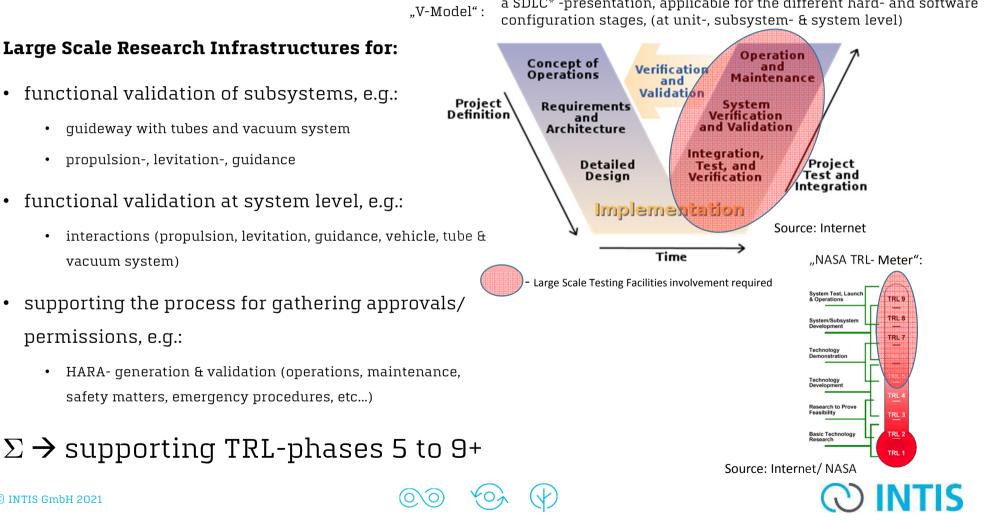
Maglev (here Transrapid) already provides proven technical means for high speed rail guided (contactless) applications up to 500km/h but without tube & vacuum

→ Experience from maglev system level testing can help to define technical requirements for Hyperloop Large Scale Research- & Testing Infrastructure

Why maglev can help to develop Large Scale Research Infrastructures for Hyperloop -> Operations & Maintenance

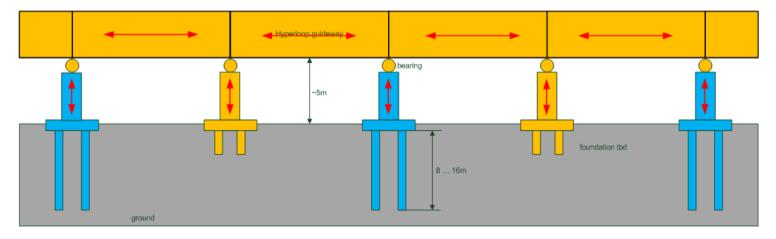
 Maglev (here Transrapid) already provides <u>operational procedures</u> for high speed rail guided (contactless) applications up to 500km/h <u>but</u> without tube & vacuum

→ Experience from maglev system operations and maintenance can help to define operational requirements for Hyperloop Large Scale Research- & Testing Infrastructure


Example: passenger evacuation:

 $\bigcirc \bigcirc$

Large Scale Research Infrastructures - a must for the validation of Hyperloop technology and operational aspects SDLC - systems development life cycle

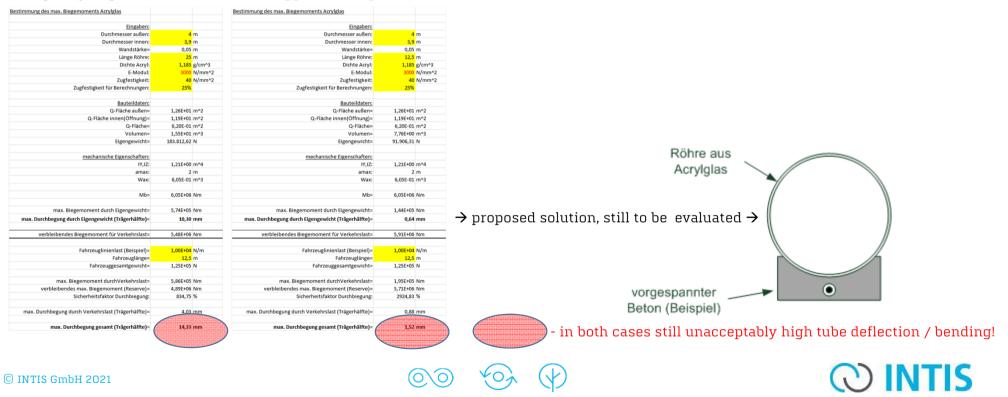

a SDLC* -presentation, applicable for the different hard- and software

TVE being available for the provision of Large Scale Research Infrastructure services (1)

... e.g. for design & functional validation of guideway/ tube construction:

 How to design guideway/ tubes & bearings at supporting pillars in order to handle lateral expansion, due to temperature changes - and how to maintain air tightness at tube section interface/ cross-over?

lateral mechanical expansion, caused by temperature changes:

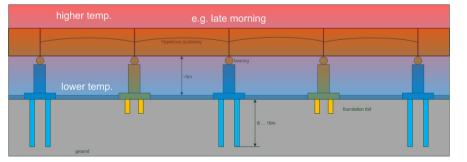

TVE being available for the provision of Large Scale Research Infrastructure services (2)

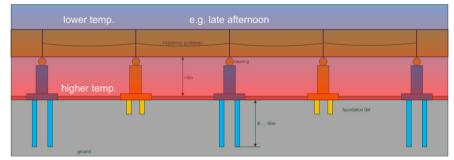
... e.g. for design & functional validation of guideway/ tube construction:

• How to design guideway/ tubes in order to cope with static loads & loads induced by rolling stock,

wind, etc.?

... e.g. acrylic glass without concrete support (examples):


TVE being available for the provision of Large Scale Research Infrastructure services (3)


... e.g. for design & functional validation of guideway/ tube construction:

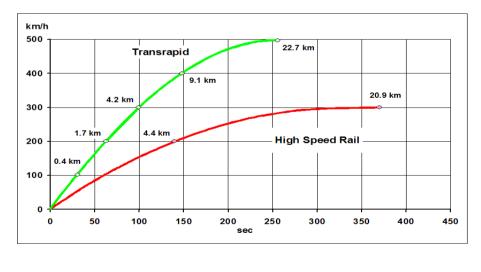
 How to design guideway/ tubes in order to keep deformation by thermal gradients (day-night temperature changes) as low as necessary?

 $\bigcirc \bigcirc$

mechanical bending, caused by guideway temperature gradients:

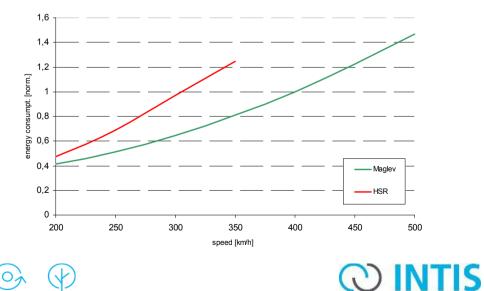
TVE being available for the provision of Large Scale Research Infrastructure services (4)

... e.g. for design & functional validation of Hyperloop propulsion system:


• in order to ensure, that the propulsion & braking system provides the required acceleration & deceleration forces?

 \bigcirc

(O)


example: maglev acceleration ability:

- comparably high acceleration at all speed levels and during braking phase
- independent of the weather conditions, no friction forces required (rail-wheel)

example: maglev energy consumption (secondary):

- 200 km/h: 22 watt hours per seat and km vs. 29 (CRS)
- 300 km/h: 34 watt hours per seat and km vs. 51 (CRS)
- 400 km/h: 52 watt hours per seat and km vs. ?? (CRS)

Questions ??

Contact

Dr. R. Effenberger <u>www.intis.de</u> ralf.effenberger@intis.de

